MySQL Tutorial

MySQL Tutorial

Abstract

Thisisthe MySQL Tutorial from the MySQL 5.1 Reference Manual.

Document generated on: 2010-07-19 (revision: 21778)
Copyright © 1997, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under alicense agreement containing restrictions on use and disclosure and are protected by intel-
lectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
inwriting.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following no-
ticeisapplicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific sup-
plemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general usein avariety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create arisk of personal injury. If you use this software in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is aregistered trademark of Oracle Corporation and/or its affiliates. MySQL is atrademark of Oracle Corporation and/or its affiliates, and shall
not be used without Oracle's express written authorization. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Cor-
poration and its affiliates will not be responsible for any loss, costs, or damages incurred due to your accessto or use of third-party content, products, or
services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Y our access to and use

of this material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has been executed and with which
you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle or as specifically provided below. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

Y ou may create a printed copy of this documentation solely for your own personal use. Conversion to other formatsis allowed aslong as the actual con-
tent is not altered or edited in any way. Y ou shall not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in amanner similar to how Oracle disseminatesit (that is, electronically for download on a Web site with the software) or on aCD-ROM
or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any
dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

For more information on the terms of thislicense, for details on how the MySQL documentation is built and produced, or if you are interested in doing a
trandation, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for libraries used by MySQL products, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versionsin vari-
ety of formats, including HTML and PDF formats, see the MySQL Documentation Library.

http://dev.mysql.com/contact/
http://dev.mysql.com/doc/refman/5.1/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Tutorial

This chapter provides atutorial introduction to MySQL by showing how to usethe nysql client program to create and use asimple
database. mysql (sometimes referred to as the “terminal monitor” or just “monitor”) is an interactive program that enables you to con-
nect to aMySQL server, run queries, and view the results. mysqgl may also be used in batch mode: you place your queriesin afile be-
forehand, thentell nysql to execute the contents of the file. Both ways of using nysql are covered here.

To seealist of options provided by mysql , invoke it with the - - hel p option:
shel | > nysql --help
This chapter assumesthat nysql isinstalled on your machine and that a MySQL server is available to which you can connect. If thisis

not true, contact your MySQL administrator. (If you are the administrator, you need to consult the relevant portions of this manual, such
as MySQL Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only in accessing an existing database,
you may want to skip over the sections that describe how to create the database and the tables it contains.

Because this chapter is tutoria in nature, many details are necessarily omitted. Consult the relevant sections of the manual for more in-
formation on the topics covered here.

http://dev.mysql.com/doc/refman/5.1/en/mysql.html#option_mysql_help
http://dev.mysql.com/doc/refman/5.1/en/server-administration.html

Chapter 1. Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke nysql and, most likely, a password.
If the server runs on a machine other than the one where you log in, you will also need to specify a host name. Contact your administrat-
or to find out what connection parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

shel | > nysgl -h host -u user -p
Ent er paSSWord: ok ok ok ok ok ok Kk

host and user represent the host name where your MySQL server isrunning and the user name of your MySQL account. Substitute
appropriate values for your setup. The * * * * * * * * represents your password; enter it when nysql displaysthe Ent er passwor d:
prompt.

If that works, you should see some introductory information followed by anysql > prompt:

shell > mysgl -h host -u user -p

Enter password: ********

Wl cone to the MySQL nmonitor. Commands end with ; or \g.

Your MySQL connection id is 25338 to server version: 5.1.49-standard
Typel‘hel p;' or "\h' for help. Type '\c' to clear the buffer.

nysql >

Thenmysql > prompt tellsyou that mysql isready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the following:

shel | > nysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HYO00): CAN' T CONNECT TO LocAL MYSQL
SERVER THROUGH SOCKET '/ TMP/ MYSQL. SocK' (2) , it means that the MySQL server daemon (Unix) or service (Windows) is not
running. Consult the administrator or see the section of Installing and Upgrading MySQL that is appropriate to your operating system.
For help with other problems often encountered when trying to log in, see Common Errors When Using MySQL Programs.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server running on the local host. If thisis
the case on your machine, you should be able to connect to that server by invoking mysql without any options:

shel | > nysql

After you have connected successfully, you can disconnect any time by typing QUI T (or \ q) at the nysql > prompt:

nysql > QU T
Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate this by the mysql > prompt.

http://dev.mysql.com/doc/refman/5.1/en/installing.html
http://dev.mysql.com/doc/refman/5.1/en/common-errors.html

Chapter 2. Entering Queries

Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in itself select any database to
work with, but that is okay. At this point, it is more important to find out a little about how to issue queries than to jump right in creating
tables, loading data into them, and retrieving data from them. This section describes the basic principles of entering commands, using
severa queries you can try out to familiarize yourself with how nysql works.

Here isasimple command that asks the server to tell you its version number and the current date. Typeit in as shown here following the
nysql > prompt and press Enter:

rrysql > SELECT VERSI O\I() CURRENT_| DATE

| VERSI ON() | CURRENT_DATE |
| 5.1.2-al pha-1og | 2005-10-11 |
B +
1 rowin set (0.01 sec)

nysql >

This query illustrates several things about nysql :

¢ A command normally consists of an SQL statement followed by a semicolon. (There are some exceptions where a semicolon may
be omitted. QUI T, mentioned earlier, is one of them. Well get to others later.)

« When you issue acommand, mysql sendsit to the server for execution and displays the results, then prints another nysql >
prompt to indicate that it is ready for another command.

« nysql displays query output in tabular form (rows and columns). The first row contains labels for the columns. The rows following
are the query results. Normally, column labels are the names of the columns you fetch from database tables. If you're retrieving the
value of an expression rather than atable column (asin the example just shown), nysql labelsthe column using the expression it-
self.

* mysql showshow many rows were returned and how long the query took to execute, which gives you arough idea of server per-
formance. These values are imprecise because they represent wall clock time (not CPU or machine time), and because they are af -
fected by factors such as server load and network latency. (For brevity, the “rowsin set” line is sometimes not shown in the remain-
ing examplesin this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

nysql > SELECT VERSI ON(), CURRENT_DATE;
nmysqgl > sel ect version(), current_date;
nmysqgl > SeLeCt VvErSi On(), current_DATE;

Here is another query. It demonstrates that you can use mysql asasimple calculator:

rrysql > SELECT SIN(PI ()/4) (4+1)*5

| 0. 70710678118655 | 25 |

1 rowin set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. Y ou can even enter multiple statements on asingle line.
Just end each one with a semicolon:

nysql > SELECT VERSI ON() SELECT NOW() ;

|‘VE‘R‘si‘civES ““““ |

1 rowin set (0.00 sec)

Entering Queries

A command need not be given al on asingle line, so lengthy commands that require several lines are not a problem. mysql determines
where your statement ends by looking for the terminating semicolon, not by looking for the end of the input line. (In other words,
nysql accepts free-format input: it collects input lines but does not execute them until it sees the semicolon.)

Here is asimple multiple-line statement:

nysql > SELECT
-> USER()
-> s
-> CURRENT_DATE;

focccccococozooo focccccozcoosco +
| USER() | CURRENT_DATE |
Jocccococsoocosooo Jocccocoscoosco +
| jon@ocal host | 2005-10-11 |
e foconcscnosocas +

In this example, notice how the prompt changes from nysql > to - > after you enter the first line of amultiple-line query. Thisis how
nysql indicatesthat it has not yet seen a complete statement and is waiting for the rest. The prompt is your friend, because it provides
valuable feedback. If you use that feedback, you can always be aware of what nysql iswaiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing\ c:

nysql > SELECT
-> USER()
->\c
nysql >

Here, too, notice the prompt. It switches back to nysql > after you type\ ¢, providing feedback to indicate that mysql isready for a
new command.

The following table shows each of the prompts you may see and summarizes what they mean about the state that mysql isin.

Prompt Meaning

nysql > Ready for new command.

-> Waiting for next line of multiple-line command.

"> Waiting for next line, waiting for completion of a string that began with asingle quote (*').
"> Waiting for next line, waiting for completion of a string that began with a double quote (“").
T> Waiting for next line, waiting for completion of an identifier that began with a backtick (“*).
[*> Waiting for next line, waiting for completion of a comment that began with / *.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but forget the terminating
semicolon. Inthiscase, nysql waitsfor more input:

nysql > SELECT USER()
->

If this happens to you (you think you've entered a statement but the only responseisa- > prompt), most likely nysql iswaiting for the
semicolon. If you don't notice what the prompt istelling you, you might sit there for awhile before realizing what you need to do. Enter
a semicolon to complete the statement, and mysql executesit:

nysql > SELECT USER()
->

’

The' > and" > prompts occur during string collection (another way of saying that MySQL is waiting for completion of a string). In
MySQL, you can write strings surrounded by either ' " or “" " characters (for example, ' hel | o' or " goodbye"), andmysql lets
you enter strings that span multiple lines. When you seea’' > or " > prompt, it means that you have entered aline containing a string
that beginswitha“' ” or “"” quote character, but have not yet entered the matching quote that terminates the string. This often indicates
that you have inadvertently left out a quote character. For example:

Entering Queries

nmysqgl > SELECT * FROM ny_t abl e WHERE nanme = 'Smith AND age < 30;
'>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead of wondering why this query
takes so long, notice the clue provided by the' > prompt. It tellsyou that nysql expectsto see the rest of an unterminated string. (Do
you see the error in the statement? The string ' Smi t h is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type\ ¢ in this case, because
nysql interpretsit as part of the string that it is collecting. Instead, enter the closing quote character (so mysql knows you've finished
the string), then type\ c:

nmysqgl > SELECT * FROM ny_t abl e WHERE nanme = 'Smith AND age < 30;
'>"\c

>
nysql >

The prompt changes back to nysql >, indicating that mysql isready for a new command.
The ™ > prompt issimilar tothe' > and " > prompts, but indicates that you have begun but not completed a backtick-quoted identifier.
It isimportant to know what the' >," >, and * > prompts signify, because if you mistakenly enter an unterminated string, any further

lines you type appear to be ignored by nysql —including aline containing QUI T. This can be quite confusing, especialy if you do not
know that you need to supply the terminating quote before you can cancel the current command.

http://dev.mysql.com/doc/refman/5.1/en/select.html

Chapter 3. Creating and Using a Database

Once you know how to enter commands, you are ready to access a database.

Suppose that you have several petsin your home (your menagerie) and you would like to keep track of various types of information
about them. Y ou can do so by creating tables to hold your data and |oading them with the desired information. Then you can answer dif-
ferent sorts of questions about your animals by retrieving data from the tables. This section shows you how to perform the following op-
erations:

» Create adatabase

e Createatable

¢ Load datainto thetable

¢ Retrieve datafrom the table in various ways

¢ Usemultipletables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which asimilar type of data-
base might be used. For example, a database like this could be used by afarmer to keep track of livestock, or by a veterinarian to keep
track of patient records. A menagerie distribution containing some of the queries and sample data used in the following sections can be

obtained from the MySQL Web site. It isavailable in both compressed t ar file and Zip formats at http://dev.mysgl.com/doc/.

Use the SHOWstatement to find out what databases currently exist on the server:

nysql > SHOW DATABASES;

fmccccocosco +
| Database |
ocoooooooo +
| nysal |
| test |
| tmp |
e mm—emmeo +

Thenysql database describes user access privileges. Thet est database often is available as a workspace for usersto try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not show databases that
you have no privileges for if you do not have the SHOW DATABASES privilege. See SHOW DATABASES Syntax.

If thet est database exists, try to accessit:
nysql > USE test
Dat abase changed

USE, like QUI T, does not require a semicolon. (Y ou can terminate such statements with a semicolon if you like; it does no harm.) The
USE statement is special in another way, too: it must be given on asingleline.

You canusethet est database (if you have accessto it) for the examples that follow, but anything you create in that database can be
removed by anyone else with accessto it. For thisreason, you should probably ask your MySQL administrator for permission to use a
database of your own. Suppose that you want to call yours nenager i e. The administrator needs to execute acommand like this:

nysql > GRANT ALL ON nenagerie.* TO 'your_nysql _nane' @your_client_host';

whereyour _nysql _nane isthe MySQL user name assigned to you and your _cl i ent _host isthe host from which you connect
to the server.

3.1. Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you need to cre-
ate it yourself:

nysql > CREATE DATABASE nenageri e;

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/use.html
http://dev.mysql.com/doc/refman/5.1/en/use.html

Creating and Using a Database

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database asnenager i e, not
asMenager i e, MENAGERI E, or some other variant. Thisis also true for table names. (Under Windows, this restriction does not ap-
ply, athough you must refer to databases and tables using the same | ettercase throughout a given query. However, for avariety of reas-
ons, the recommended best practice is always to use the same | ettercase that was used when the database was created.)

Note

If you get an error such asERROR 1044 (42000): ACCESS DENIED FOR USER ' MONTY' @ LOCALHOST' TO DATA-
BASE ' MENAGERI E' when attempting to create a database, this means that your user account does not have the necessary
privileges to do so. Discuss this with the administrator or see The MySQL Access Privilege System.

Creating a database does not select it for use; you must do that explicitly. To make nenager i e the current database, use this com-
mand:

nysql > USE nenageri e
Dat abase changed

Y our database needs to be created only once, but you must select it for use each time you beginanysql session. You can do thishy is-
suing a USE statement as shown in the example. Alternatively, you can select the database on the command line when you invoke
nysql . Just specify its name after any connection parameters that you might need to provide. For example:

shell > mysgl -h host -u user -p nmenagerie
Ent er passmrd: *kkkkkokk

Important

nenager i e inthe command just shown is not your password. If you want to supply your password on the command line
after the - p option, you must do so with no intervening space (for example, as- pnmypasswor d, not as- p nypass-
wor d). However, putting your password on the command line is not recommended, because doing so exposes it to snoop-
ing by other userslogged in on your machine.

Note
Y ou can see at any time which database is currently selected using SELECT DATABASE() .

3.2. Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHON TABLES tellsyou:

nysql > SHOW TABLES;
Enpty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what columns should be in each of
them.

Y ou want atable that contains arecord for each of your pets. This can be called the pet table, and it should contain, as a bare minim-
um, each animal's name. Because the name by itself is not very interesting, the table should contain other information. For example, if
more than one person in your family keeps pets, you might want to list each animal's owner. Y ou might also want to record some basic
descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes as time passes, which means
you'd have to update your records often. Instead, it is better to store afixed value such as date of birth. Then, whenever you need age,
you can calculate it as the difference between the current date and the birth date. MySQL provides functions for doing date arithmetic,
so thisis not difficult. Storing birth date rather than age has other advantages, too:

¢ You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you think this type of query is
somewhat silly, note that it is the same question you might ask in the context of a business database to identify clients to whom you
need to send out birthday greetings in the current week or month, for that computer-assisted personal touch.)

« You can calculate age in relation to dates other than the current date. For example, if you store death date in the database, you can
easily calculate how old a pet was when it died.

http://dev.mysql.com/doc/refman/5.1/en/privilege-system.html
http://dev.mysql.com/doc/refman/5.1/en/use.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_database
http://dev.mysql.com/doc/refman/5.1/en/show-tables.html

Creating and Using a Database

Y ou can probably think of other types of information that would be useful in the pet table, but the onesidentified so far are sufficient:
name, owner, species, sex, birth, and death.

Use aCREATE TABLE statement to specify the layout of your table:
nysql > CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> speci es VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner , and speci es columns because the column values vary in length. The lengthsin
those column definitions need not all be the same, and need not be 20. Y ou can normally pick any length from 1 to 65535, whatever
seems most reasonable to you. If you make a poor choice and it turns out later that you need alonger field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, suchas' mi and' f' , or perhaps’ nal e' and' fenal e' . It
issimplest to use the single characters' ni and' f ' .

The use of the DATE datatypefor the bi r t h and deat h columnsisafairly obvious choice.

Once you have created a table, SHOW TABLES should produce some outpuit:

nysql > SHOW TABLES;

ffmoccooccooccooccoosoo +
| Tables in nenagerie |
foooncnoconsonononooom +
| pet |
L +

---------------------- focccocdmocosdmosocoocodmoonooodh
| Field | Type | Null | Key | Default | Extra |
Pfooccooc=o fooccooccoooco Foco=co PFooo=o Pfooccooc=o PFoco=oeos +
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NuULL	
species	varchar(20)	YES		NuLL	
sex	char(1)	YES		NuLL	
birth	date	YES		NuLL	
death	date	YES		NuLL	
PFooccooc=o foocccoccoooco PFoco=co PFooo=o PFooccooc=o Foco=oeos +

Y ou can use DESCRI BE any time, for example, if you forget the names of the columnsin your table or what types they have.

For more information about MySQL data types, see Data Types.

3.3. Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and | NSERT statements are useful for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects datesin' YYYY- MM DD format; this
may be different from what you are used to.)

name owner species sex birth death
Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29
Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it isto create atext file containing arow for each of your an-

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/char.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/show-tables.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/data-types.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html

Creating and Using a Database

imals, then load the contents of the fileinto the table with a single statement.

You could create atext filepet . t xt containing one record per line, with values separated by tabs, and given in the order in which the
columns were listed in the CREATE TABLE statement. For missing values (such as unknown sexes or death dates for animalsthat are
still living), you can use NULL values. To represent these in your text file, use\ N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Wi st | er Gnen bird \'N 1997-12-09 \'N

To load thetext file pet . t xt intothepet table, use this statement:

nmysql > LOAD DATA LOCAL | NFILE '/path/pet.txt' |NTO TABLE pet;

If you created the file on Windows with an editor that uses\ r \ n asaline terminator, you should use this statement instead:
nysql > LOAD DATA LOCAL | NFILE '/path/pet.txt' |NTO TABLE pet
-> LINES TERM NATED BY ‘'\r\n';

(On an Apple machine running OS X, you would likely want touse LI NES TERM NATED BY "\r"'.)

Y ou can specify the column value separator and end of line marker explicitly inthe LOAD DATA statement if you wish, but the defaults
are tab and linefeed. These are sufficient for the statement to read the file pet . t xt properly.

If the statement fails, it islikely that your MySQL installation does not have local file capability enabled by default. See Security Issues
with LOAD DATA LOCAL, for information on how to change this.

When you want to add new records one at atime, the | NSERT statement is useful. Inits simplest form, you supply values for each
column, in the order in which the columns were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster named
“Puffball.” Y ou could add a new record using an | NSERT statement like this:

nmysql > | NSERT | NTO pet
-> VALUES (' Puffball','Diane',"hanster','f','1999-03-30", NULL);

String and date values are specified as quoted strings here. Also, with | NSERT, you can insert NULL directly to represent a missing
value. You do not use\ Nlike you do with LOAD DATA.

From this example, you should be able to see that there would be alot more typing involved to load your records initially using several
| NSERT statements rather than asingle LOAD DATA statement.

3.4. Retrieving Information from a Table

The SELECT statement is used to pull information from atable. The general form of the statement is:

SELECT what _to_sel ect
FROM whi ch_t abl e
VWHERE conditions_to_satisfy;

what _t o_sel ect indicates what you want to see. This can be alist of columns, or * toindicate “al columns.” whi ch_t abl e in-
dicates the table from which you want to retrieve data. The WHERE clause is optional. If it ispresent, condi ti ons_t o_sati sfy
specifies one or more conditions that rows must satisfy to qualify for retrieval.

3.4.1. Selecting All Data

The simplest form of SELECT retrieves everything from atable:

------------------ focccooccodmcocoodmococosocosodmoooooooooeodl
| nane | owner | species | sex | birth | death |
foccccocosco fooccooos fooccooc=o ocozco foocccoccoasos fooccococcoasos +
Fluffy	Harold	cat	f	1993-02-04	NULL
daws	Gnen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Wiistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/load-data-local.html
http://dev.mysql.com/doc/refman/5.1/en/load-data-local.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html

Creating and Using a Database

| Puffball | Diane | hanster | f | 1999-03-30 | NULL
L E S L e e +

Thisform of SELECT isuseful if you want to review your entire table, for example, after you've just loaded it with your initial data set.
For example, you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your original pedigree papers,
you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

« Editthefile pet . t xt to correct the error, then empty the table and reload it using DELETE and LOAD DATA:
nysql > DELETE FROM pet ;
nysql > LOAD DATA LOCAL | NFILE 'pet.txt' |NTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

* Fix only the erroneous record with an UPDATE statement:

nysql > UPDATE pet SET birth = '1989-08-31' WHERE nane = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.4.2. Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from the SELECT statement. But
typically you don't want to see the entire table, particularly when it becomes large. Instead, you're usually more interested in answering
aparticular question, in which case you specify some constraints on the information you want. Let's look at some selection queriesin
terms of questions about your pets that they answer.

Y ou can select only particular rows from your table. For example, if you want to verify the change that you made to Bowser's birth date,
select Bowser's record like this:

rrysql > SELECT * FROM pet VWERE name = ' Bouser';

------------------------------ B e
| name | owner | speci es | sex | birth | death |
eocmmooo feoccomosdmoccoo-co Fmcmmoo eoccoosooooo ooccmocooooo

| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
Fooccooso fooccoocdimoccoo-co Foco=co ooccooccooso Fooccooccoosoo +

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify thenameas' bowser' ,' BOASER' , and so forth. The query res-
ult isthe same.

Y ou can specify conditions on any column, not just nane. For example, if you want to know which animals were born during or after
1998, test the bi r t h column:

nysq|> SELECT * FRO\/I pet V\HERE birth >="'1998-1-1';

-------------------------------- fooccooccooccdmocoos=db
| nanme | owner | speci es | sex | birth | death |
foccscocosco Focozooo fooccoocoo Focosco fooccooccoasos Focozooo +
| Chirpy | Grven | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hanster | f | 1999-03-30 | NULL |
foccccocosco PFoco=oeos Pfooccooc=o Foco=co Pfooccooccoosoo PFoco=oeos +

Y ou can combine conditions, for example, to locate female dogs:

r’rysql> SELECT * FRO\/I pet WHERE species = 'dog' AND sex = '"f';

The preceding query uses the AND logical operator. There is aso an OR operator:

nysql > SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';

9

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_or

Creating and Using a Database

S S O S Lo S £ R S e S S S S +
| nane | owner | species | sex | birth | death |
Fommm e Fommm o Fommmm e m o Fommm - L Fommm e o +
Chirpy	Gven	bird	f	1998-09-11	NULL
Whistler	Gven	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Poccccco=co Foco=oeos Pooccooc=o PFoco=co Pooccooccoooo PFoco=oes +

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it is a good idea to use paren-
theses to indicate explicitly how conditions should be grouped:

nmysqgl > SELECT * FROM pet WHERE (species = 'cat' AND sex = 'ml)
-> OR (species = 'dog’ AND sex = 'f');
+ +

domeea- dommmm e e T domeea- +
| nane | owner | species | sex | birth | death |
R Foeeeeas S L Foceeeaaaa R +
| Caws | Gaen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
dommean- e R doma o dommee-- +

3.4.3. Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested, separated by commas. For ex-
ample, if you want to know when your animals were born, select the nane and bi r t h columns:

mysqgl > SELECT nane, birth FROM pet;
+

S S S S S

| nane | birth |
R Fom oo +
Fluffy	1993-02-04
Caws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chir	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
[B +

To find out who owns pets, use this query:

nmysql > SELECT owner FROM pet;
e mmeooe - +

Q
@
=
@

Notice that the query simply retrieves the owner column from each record, and some of them appear more than once. To minimize the
output, retrieve each unique output record just once by adding the keyword DI STI NCT:

nmysqgl > SELECT DI STI NCT owner FROM pet;
P +

Y ou can use a V\HERE clause to combine row selection with column selection. For example, to get birth dates for dogs and cats only,
use this query:

nmysql > SELECT nane, species, birth FROM pet

-> WHERE species = 'dog’ OR species = 'cat';
focccoao= fooccooc=o foocccoccoacos +
| nane | species | birth |
fooccoaos moccoocoo fooccooccoass +

10

http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_or

Creating and Using a Database

Fluffy	cat	1993-02-04
daws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
B Fomm e e m - - B +

3.4.4. Sorting Rows

Y ou may have noticed in the preceding examples that the result rows are displayed in no particular order. It is often easier to examine
query output when the rows are sorted in some meaningful way. To sort aresult, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

fecmmccoooo fooccoosooooo
| nane | birth |
feccccco=co Gooccooccooso +
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Cdaws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirp	1998-09-11
Puffball	1999-03-30
Fommm e L +

On character type columns, sorting—Ilike all other comparison operations—is normally performed in a case-insensitive fashion. This
means that the order is undefined for columns that are identical except for their case. Y ou can force a case-sensitive sort for a column by
using Bl NARY like so: ORDER BY BI NARY col _nane.

The default sort order is ascending, with smallest valuesfirst. To sort in reverse (descending) order, add the DESC keyword to the name
of the column you are sorting by:

nmysqgl > SELECT nanme, birth FROM pet ORDER BY birth DESC,
EEGEE SR hoimiaie oo +

| nane | birth |
B S S S S S +
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
daws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
E R - +

Y ou can sort on multiple columns, and you can sort different columnsin different directions. For example, to sort by type of animal in
ascending order, then by birth date within animal type in descending order (youngest animalsfirst), use the following query:

nysql > SELECT nane, species, birth FROM pet
-> ORDER BY species, birth DESC,

mcoscocosoo dmoccoocoo fmoccococcoacos +
| nane | species | birth |
B S E S S S S S S +
Chirp	bird	1998-09-11
Whistler	bird	1997-12-09
daws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hanster	1999-03-30
Slim	snake	1996-04-29
foccscocosco ooccoocoo fooccooccoass +

The DESC keyword applies only to the column name immediately preceding it (bi r t h); it does not affect the speci es column sort
order.

3.4.5. Date Calculations

11

http://dev.mysql.com/doc/refman/5.1/en/cast-functions.html#operator_binary

Creating and Using a Database

MySQL provides several functions that you can use to perform calculations on dates, for example, to calculate ages or extract parts of
dates.

To determine how many years old each of your petsis, compute the difference in the year part of the current date and the birth date,
then subtract one if the current date occurs earlier in the calendar year than the birth date. The following query shows, for each pet, the
birth date, the current date, and the age in years.

nysql > SELECT nane, birth, CURDATE(),
-> (YEAR(CURDATE()) - YEAR(bi rth))
-> - (RI GHT(CURDATE(), 5) <RI GHT(bi rt h, 5))

-> AS age

-> FROM pet ;
o o L temmm - +
| nane | birth | CURDATE() | age |
o B o temmm -
Fluffy	1993-02-04	2003-08-19	10
Caws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
doooooooono doooooooooooo doooooooooooo doooooo +

Here, YEAR() pullsout the year part of adate and Rl GHT() pulls off the rightmost five characters that represent the Mt DD (calendar
year) part of the date. The part of the expression that compares the MVt DD values evaluates to 1 or 0, which adjusts the year difference
down ayear if CURDATE() occurs earlier in the year than bi r t h. The full expression is somewhat ungainly, so an alias (age) is used
to make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some order. This can be done by adding an
ORDER BY nane clause to sort the output by name:

nysql > SELECT nane, birth, CURDATE(),
-> (YEAR(CURDATE()) - YEAR(birth))
-> - (RI GHT(CURDATE(), 5) <RI GHT(bi rt h, 5))

-> AS age

-> FROM pet ORDER BY nane;
o o o temmm - +
| nane | birth | CURDATE() | age |
e e e teeeaa-
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
O aws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
o o o temmm- - +

To sort the output by age rather than nane, just use adifferent ORDER BY clause:

nysql > SELECT nane, birth, CURDATE(),
-> (YEAR(CURDATE()) - YEAR(bi rth))
-> - (RI GHT(CURDATE(), 5) <RI GHT(bi rth, 5))
-> AS age
-> FROM pet ORDER BY age;

o temmemeeea B R +eeea- +
| nane | birth | CURDATE() | age |
[B B +-mm - - -

Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
O aws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
tomemeiea B B teomeaa- +

A similar query can be used to determine age at death for animals that have died. Y ou determine which animals these are by checking
whether the deat h valueis NULL. Then, for those with non-NUL L values, compute the difference between the deat h and bi r t h val-
ues:

12

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_right
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_curdate

Creating and Using a Database

nmysqgl > SELECT nane, birth, death,
-> (YEAR(deat h) YEAR(bl rth)) - (RIGHT(death, 5) <RI GHT(birth,5))
-> AS age
-> FRO\/I pet WHERE death I'S NOT NULL ORDER BY age;

Thequery usesdeat h |'S NOT NULL rather than deat h <> NULL because NULL is aspecial value that cannot be compared us-
ing the usual comparison operators. Thisis discussed later. See Section 3.4.6, “Working with NULL Values’.

What if you want to know which animals have birthdays next month? For this type of calculation, year and day are irrelevant; you
simply want to extract the month part of the bi r t h column. MySQL provides several functions for extracting parts of dates, such as
YEAR() , MONTH() , and DAYOFMONTH() . MONTH() isthe appropriate function here. To see how it works, run asimple query that
displays the value of both bi rt h and MONTH(bi rt h) :

nysql > SELECT nanme, birth, MONTH(birth) FROM pet;
+

...................... o e e e e e -
| name | birth | MONTH(birth) |
focsocoooooo fcocosoooooo fcocoooocooooo +
Fluffy	1993-02-04	2
daws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990- 08- 27	8
Bowser	1989-08-31	8
[Chirpy	1998-09-11	9
Wistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
fmoooocsoooo fsocococsoocooo fmocococsoosooooo +

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is April. Then the month value is
4 and you can look for animals born in May (month 5) like this:

rrysql > SELECT nane, b| rth FROM pet WHERE MONTH(birth) = 5;

| name | birth |

Thereisasmall complication if the current month is December. Y ou cannot merely add one to the month number (12) and look for an-
imals born in month 13, because there is no such month. Instead, you look for animals born in January (month 1).

Y ou can write the query so that it works no matter what the current month is, so that you do not have to use the number for a particular
month. DATE_ADD() enablesyou to add atime interval to agiven date. If you add a month to the value of CURDATE() , then extract
the month part with MONTH() , the result produces the month in which to look for birthdays:

nmysql > SELECT nane, birth FROM pet
-> WHERE MONTH(bi rth) = MONTH(DATE_ADD(CURDATE(), | NTERVAL 1 NONTH));

A different way to accomplish the sasmetask isto add 1 to get the next month after the current one after using the modulo function
(MOD) to wrap the month valueto O if it iscurrently 12:

nysqgl > SELECT nane, birth FROM pet
-> WHERE MONTH(bi rth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns anumber between 1 and 12. And MOD(somret hi ng, 12) returns anumber between O and 11. So the addition has
to be after the MOD() , otherwise we would go from November (11) to January (1).

3.4.6. Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “amissing unknown value” and it is treated
somewhat differently from other values. To test for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>. To
demonstrate this for yourself, try the following query:

rrysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1> NULL;
--------------------- fmoococsoosodmoosoososodh
| 1=NULL| 1 <> NULL | 1 < NULL | 1 > NULL |

13

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_year
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_dayofmonth
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_date-add
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_curdate
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html#function_month
http://dev.mysql.com/doc/refman/5.1/en/mathematical-functions.html#function_mod
http://dev.mysql.com/doc/refman/5.1/en/mathematical-functions.html#function_mod

Creating and Using a Database

NULL | NULL | NULL | NULL |
fmoocosooso g fmoocosooso fmoocosooso +

Clearly you get no meaningful results from these comparisons. Usethel S NULL and | S NOT NULL operators instead:

rrysql > SELECT 1 1S NULL, 1 I'S NOT NULL;

__________________________ -t
|1ISNULL| 1 1S NOT NULL |
fococosooooo focococsoosoocooo +
| 0| 1]
focoococooooo fcocosoocoooooo +

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean operationis 1.

This special treatment of NULL iswhy, in the previous section, it was necessary to determine which animals are no longer alive using
death |I'S NOT NULL instead of deat h <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if youdo ORDER BY ... ASCand lastif youdo ORDER BY . ..
DESC.

A common error when working with NULL isto assume that it is not possible to insert a zero or an empty string into a column defined
asNOT NULL, but thisis not the case. These are in fact values, whereas NULL means “not having avalue.” Y ou can test this easily
enoughby using | S [NOT] NULL as shown:

rrysql> SELECT 0 IS NULL, O IS NOT NULL, '' IS NULL, '' IS NOT NULL;
-------------------------- dcoococooooondmosooanosooanooods

| 0ISNULL| 0O ISNOT NULL | '* IS NULL | '' IS NOT NULL |
__________________________ e e e e e e e e e e e e e e = o AR

| 0 | 1] 0 | 1]
g dhmoososcosoosoos dmoococsoosoos L +

Thusit is entirely possible to insert a zero or empty string into aNOT NULL column, asthese arein fact NOT NULL. See Problems
with NULL Values.

3.4.7. Pattern Matching
MySQL provides standard SQL pattern matching as well as aform of pattern matching based on extended regular expressions similar to
those used by Unix utilitiessuch asvi , gr ep, and sed.

“w o

SQL pattern matching enables you to use to match any single character and “98 to match an arbitrary number of characters
(including zero characters). In MySQL, SQL patterns are case-insensitive by default. Some examples are shown here. Y ou do not use =
or <> when you use SQL patterns; usethe L1 KE or NOT LI KE comparison operators instead.

To find names beginning with “b”:

nysql> SELECT * FROM pet WHERE name LIKE ' b% ;

------------------------------- +------------+------------+
| name | owner | speci es | sex | birth | death |
R R Fomm - R Fomm e m oo Fomm e m oo +
| Buffy | Harold | dog | f | 1989-05-13 | NULL
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29
E R E R E H---- - - - +
To find names ending with “f y”:
nysq|> SELECT * FROM pet WHERE name LIKE '%y'

------------------------------- oSS s B S S
| name | owner | speci es | sex | birth | death
Fo-mm - - - B L R H---- - Fomm e H---m - - - +
| Fluffy | Harold| cat | f | 1993-02-04 | NULL |
| Buffy | Har ol d | dog | f | 1989-05-13 | NULL
S S S s £ S R +
To find names containing a“w":
rrysql > SELECT o FRO\/I pet WHERE nane LI KE ' %% ;

-------------------------- B e S i
| name | owner | species | sex | birth | death

14

http://dev.mysql.com/doc/refman/5.1/en/comparison-operators.html#operator_is-null
http://dev.mysql.com/doc/refman/5.1/en/comparison-operators.html#operator_is-not-null
http://dev.mysql.com/doc/refman/5.1/en/problems-with-null.html
http://dev.mysql.com/doc/refman/5.1/en/problems-with-null.html
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_not-like

Creating and Using a Database

R Fommm o - Fommmm e m - Hommm - R R +
daws	Gven	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Wiistler	Gven	bird	NULL	1997-12-09	NULL
focmmcco=co Foco=oes eoccooooo Focm=co ooccoocoooso moccoocoooso +

To find names containing exactly five characters, use five instances of the“_" pattern character:

------------------------ +------+------------+1------+
| nanme | owner | species | sex | birth | death |
focozooo fooccoaos ooccooccodmooass ooccooccoacos focozooo

| Caws | Gaen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
Focomoeos Fooccooso ooccooooo Foco=co ooccooccooso Focomoes +

The other type of pattern matching provided by MySQL uses extended regular expressions. When you test for a match for this type of
pattern, use the REGEXP and NOT REGEXP operators (or RLI KE and NOT RLI KE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

e “. " matches any single character.

e A character class”“[. . .] ” matches any character within the brackets. For example, “[abc] ” matches“a”, “b”, or “c”. To name a
range of characters, useadash. “[a- z] " matches any letter, whereas“[0- 9] " matches any digit.

e “*" matches zero or more instances of the thing preceding it. For example, “x*” matches any humber of “x” characters, “[0- 9] *”
matches any number of digits, and “. *” matches any number of anything.

e A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This differsfrom a Ll KE pattern
match, which succeeds only if the pattern matches the entire value.)

e Toanchor apattern so that it must match the beginning or end of the value being tested, use “*” at the beginning or “$” at the end
of the pattern.
To demonstrate how extended regular expressions work, the LI KE queries shown previously are rewritten here to use REGEXP.

To find names beginning with “b”, use “*” to match the beginning of the name:

rrysq|> SELECT * FRO\/I pet W—IERE name REGEXP ' b’

------------------------------- +------------+------------+
| name | owner | speci es | sex | birth | death |
R R Fomm - R R Fomm e - - +
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
E R E R E H--- - - - - +

If you really want to force a REGEXP comparison to be case sensitive, use the Bl NARY keyword to make one of the strings a binary
string. This query matches only lowercase “b” at the beginning of a name:

nysql > SELECT * FROM pet WHERE name REGEXP Bl NARY ' “b';

To find names ending with “f y”, use “$” to match the end of the name:

nrysq|> SELECT * FRO\/I pet W—IERE name REGEXP 'fy$'

------------------------------- P T

| name | owner | speci es | sex | birth | death |
L R Fommm - - Homm - - R e +

| FI uffy| Harold | cat | f | 1993-02-04 | NULL |

| Buffy | Harold | dog | f | 1989-05-13 | NULL |
fooccooccdmocoosco fooccoocoo Focosco fooccooccoasos Focozooo +

To find names containing a“w’, use this query:

rrysql > SELECT & FROM pet WHERE nanme REGEXP 'W ;
-------------------------- Y
| name | owner | species | sex | birth | death |
e mmmemmeo e mmme s e mmmmmmeo dmemm e e mmommmoe o e mmommmoeo +
Caws	Gren	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Wiistler	Gven	bird	NULL	1997-12-09	NULL

15

http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_not-regexp
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_not-regexp
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/5.1/en/regexp.html#operator_regexp
http://dev.mysql.com/doc/refman/5.1/en/cast-functions.html#operator_binary

Creating and Using a Database

Because aregular expression pattern matches if it occurs anywhere in the value, it is not necessary in the previous query to put awild-
card on either side of the pattern to get it to match the entire value like it would be if you used an SQL pattern.

To find names containing exactly five characters, use “*” and “$” to match the beginning and end of the name, and five instances of

“. " in between:

nmysql > SELECT * FROM pet WHERE name REGEXP '~..... $';
foco=oeo= Pooccooo= fooccooc=o Foco=co fooccooccooso focc=oeos +
| nane | owner | species | sex | birth | death |
Pfocozoeoo Pfooccooos Pfooccococ=o PFocozco PJooccooccoaos Pfocozoeoo +
| Caws | Gaen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
ocom=eos Fooccoooo Fooccooooo Foco=co Fooccooccoosoo Foco=oes +

Y ou could also write the previous query using the{ n} (“repeat-n-times’) operator:

nysql > SELECT * FROM pet WHERE name REGEXP '~.{5}$%$';
focomooc fmococoos fococoocac D focoocococoos focoococ +
birth | death |

owner |
+

m | 1994-03-17 | NULL
|
+

species | sex

Sl i
Caws | Gnen | cat

| | 1989-05-13 | NULL |

+ +

Regular Expressions, provides more information about the syntax for regular expressions.

3.4.8. Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in atable?’ For example, you might want
to know how many pets you have, or how many pets each owner has, or you might want to perform various kinds of census operations
on your animals.

Counting the total number of animals you have is the same question as“How many rows arein the pet table?’ because thereis one re-
cord per pet. COUNT(*) counts the number of rows, so the query to count your animals looks like this:

nmysql > SELECT COUNT(*) FROM pet;
L +
| COUNT(*) |

Earlier, you retrieved the names of the people who owned pets. Y ou can use COUNT() if you want to find out how many pets each
owner has:

nmysqgl > SELECT owner, COUNT(*) FROM pet GROUP BY owner;
omm - [+

The preceding query uses GROUP BY to group all records for each owner . The use of COUNT() in conjunction with GROUP BY is
useful for characterizing your data under various groupings. The following examples show different ways to perform animal census op-
erations.

Number of animals per species:

nysql > SELECT speci es, COUNT(*) FROM pet GROUP BY speci es;
fmcccooo== fmcccoooo=o +
| species | COUNT(*)

+ +

16

http://dev.mysql.com/doc/refman/5.1/en/regexp.html
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_count

Creating and Using a Database

Number of animals per sex:

nysql > SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+

| sex | COUNT(*) |
Focosco foccscocosoo +
| NULL | 1|

f | 4|
[m | 4 |
e oo dfmcmm—ommeo +

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

rrysq|> SELECT speci es, sex, CQJNT(*) FROM pet GROUP BY species, sex;

COUNT(*) L

Y ou need not retrieve an entire table when you use COUNT() . For example, the previous query, when performed just on dogs and cats,
looks likethis:

mysql > SELECT speci es, sex, COUNT(*) FRO\/I pet
-> WHERE species = 'dog OR species = 'cat'
-> GROUP BY speC| es, sex;

R L +

| species | sex | COUNT(*) |
e mmmmeo e oo dmemmmmmmoo
| cat | f | 1]
| cat | m | 1|
| dog | f | 1]
| dog [m | 2|
B Homm - - Fommm - +

Or, if you wanted the number of animals per sex only for animals whose sex is known:

nysql > SELECT speci es, sex, COUNT(*) FROM pet
-> WHERE sex |'S NOT NULL
-> GROUP BY species, sex;
+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present that names those same
columns. Otherwise, the following occurs:

e Ifthe ONLY_FULL_GROUP_BY SQL mode s enabled, an error occurs:

nysql > SET sql _npde = ' ONLY_FULL_GROUP_BY" ;

Query OK, 0 rows affected (0 00 sec)

nmysql > SELECT owner, COUNT(*) FROM pet;

ERROR 1140 (42000): M xing of GROUP colums (M N(), MAX(), COUNT()...)
with no GROUP columms is illegal if there is no GROUP BY cl ause

« If ONLY_FULL_GROUP_BY isnot enabled, the query is processed by treating all rows as a single group, but the value selected for
each named column is indeterminate. The server is free to select the value from any row:

17

http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_count
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_only_full_group_by
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_only_full_group_by

Creating and Using a Database

nysql > SET sqgl _node = "'
Query OK, 0 rows affected (O 00 sec)
nysql > SELECT owner , CCUNT() FROM pet;

1 row in set (0.00 sec)

See also GROUP BY and HAVI NGwith Hidden Columns.

3.4.9. Using More Than one Table

The pet table keepstrack of which pets you have. If you want to record other information about them, such as eventsin their liveslike
visits to the vet or when litters are born, you need another table. What should this table look like? It needs to contain the following in-
formation:

¢ The pet name so that you know which animal each event pertains to.

e A date so that you know when the event occurred.

¢ A field to describe the event.

e Aneventtypefield, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

nysql > CREATE TABLE event (nanme VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

Aswiththepet table, itiseasiest toload theinitial records by creating a tab-delimited text file containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 femae, 1 mae
Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male
Buffy 1994-06-19 litter 3 puppies, 3 female
Chirpy 1999-03-21 vet needed beak straightened
Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him anew chew toy
Claws 1998-03-17 birthday Gave him anew flea collar
Whistler 1998-12-09 birthday First birthday

Load the records like this:

nysql > LOAD DATA LOCAL | NFILE 'event.txt'

| NTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able to perform retrievals on the re-
cordsintheevent table; the principles are the same. But when isthe event table by itself insufficient to answer questions you might

ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calculate ages from two dates. The
litter date of the mother isinthe event table, but to calculate her age on that date you need her birth date, which is stored in the pet

table. This means the query requires both tables:

http://dev.mysql.com/doc/refman/5.1/en/group-by-hidden-columns.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html

Creating and Using a Database

nysql > SELECT pet. nanme
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date, 5) <RI GHT(birth,5)) AS age,
-> remark
-> FROM pet | NNER JO N event
-> ON pet.name = event.nane
-> WHERE event.type = 'litter’
temeeeaan temea-- e eeeeaeaa +

| name | age remar k |

1 male |
5 puppies, 2 female, 3 male |
i |

L
I 4 kittens, 3 fenule,
| 3 puppies, 3 fenale
+

There are several things to note about this query:

* The FROMclause joins two tables because the query needsto pull information from both of them.

¢ When combining (joining) information from multiple tables, you need to specify how records in one table can be matched to records
in the other. Thisis easy because they both have anane column. The query uses an ON clause to match up records in the two tables
based on the nane values.

The query usesan | NNER JO Nto combinethetables. An 1 NNER JO N permits rows from either table to appear in the result if
and only if both tables meet the conditions specified in the ON clause. In this example, the ON clause specifies that the nanme column
inthe pet table must match the nane columnintheevent table. If aname appearsin one table but not the other, the row will not
appear in the result because the condition in the ON clause fails.

e Becausethe nane column occursin both tables, you must be specific about which table you mean when referring to the column.
Thisis done by prepending the table name to the column name.

Y ou need not have two different tablesto perform ajoin. Sometimesit is useful to join atable to itself, if you want to compare records
in atable to other records in that same table. For example, to find breeding pairs among your pets, you can join the pet table with itself
to produce candidate pairs of males and females of like species:

nysql > SELECT pl.nane, pl.sex, p2.name, p2.sex, pl.species
-> FROM pet AS pl INNER JO N pet AS p2
-> ON pl.species = p2.species AND pl.sex = 'f' AND p2.sex = 'mi;
+ +

e B I S Fommm e a - +
| nane | sex | nane | sex | species |
e mmom o e oo e mmom o e oo e mmmmoo +
Fluffy	f	daws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
PFooccooo= Foco=co PFooccoooo Foco=co Pfooccooc=o +

In this query, we specify aliases for the table name to refer to the columns and keep straight which instance of the table each column ref-
erence is associated with.

19

Chapter 4. Getting Information About Databases and Tables

What if you forget the name of a database or table, or what the structure of agiven table is (for example, what its columns are called)?
MySQL addresses this problem through several statements that provide information about the databases and tables it supports.

Y ou have previously seen SHOW DATABASES, which lists the databases managed by the server. To find out which database is cur-
rently selected, use the DATABASE() function:

nysql > SELECT DATABASE();

fooccoocooaoo +
| DATABASE() |
Pfoocccoccoaos +
| menagerie |
fooccooccoasos +

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name of atable), use this command:

nysql > SHOW TABLES;

ffmoccococcooccooccoosoo +
| Tabl es_i n_nenagerie |
ooccoocooocooocoooooo +
| event |
| pet |
Jooccooccooccooccoosoo +

The name of the column in the output produced by this statement isalways Tabl es_i n_db_nane, wheredb_nan® isthe name of
the database. See SHOW TABLES Syntax, for more information.

If you want to find out about the structure of atable, the DESCRI BE statement is useful; it displays information about each of atable's

columns;

nysql > DESCRI BE pet ;

e mmmmoo dfmommmmmmoo- o dhmemm e e e e mmmmeo e s +
| Field | Type | Null | Key | Default | Extra |
feoccooooo eoccmoccoo-co Fmcmmoo Feomoo feoccooooo ecmmoes +
| nane | varchar(20) | YES | | NULL |

| owner | varchar(20) | YES | | NuLL | |
| species | varchar(20) | YES | | NULL |

sex	char(1)	YES		NuLL	
birth	date	YES		NULL	
death	date	YES		NULL	
Feoccooooo moccooccooooo Focm=oo e oo Fooccooooo Fecmmoes +

Fi el d indicates the column name, Ty pe isthe data type for the column, NULL indicates whether the column can contain NULL val-
ues, Key indicates whether the column isindexed, and Def aul t specifies the column's default value. Ext r a displays special informa-
tion about columns: If a column was created with the AUTO | NCREMENT option, the valuewill beaut o_i ncr enent rather than
empty.

DESCisashort form of DESCRI BE. See DESCRI BE Syntax, for more information.

Y ou can obtain the CREATE TABLE statement necessary to create an existing table using the SHOV CREATE TABLE statement. See
SHOW CREATE TABLE Syntax.

If you have indexes on atable, SHOW | NDEX FROM t bl _name produces information about them. See SHOW | NDEX Syntax, for
more about this statement.

20

http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_database
http://dev.mysql.com/doc/refman/5.1/en/show-tables.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.1/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.1/en/show-index.html

Chapter 5. Using nysqgl in Batch Mode

In the previous sections, you used mysql interactively to enter queries and view the results. You can also run nysql in batch mode.
To do this, put the commands you want to run in afile, thentell nysql to read itsinput from the file:

shell > mysgl < batch-file

If you are running mysql under Windows and have some special charactersin the file that cause problems, you can do this:

C\> nysqgl -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell > mysgl -h host -u user -p < batch-file
Ent er paSSV\Drd: kkkkokkokk

When you use mysql thisway, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statementsin it produce errors, you should usethe - - f or ce command-line op-
tion.

Why use a script? Here are a few reasons:

« If you run aquery repeatedly (say, every day or every week), making it a script enables you to avoid retyping it each time you ex-
ecuteit.

* You can generate new queries from existing ones that are similar by copying and editing script files.

e Batch mode can also be useful while you're developing a query, particularly for multiple-line commands or multiple-statement se-
guences of commands. If you make a mistake, you don't have to retype everything. Just edit your script to correct the error, then tell
nysql toexecuteit again.

« If you have a query that produces alot of output, you can run the output through a pager rather than watching it scroll off the top of
your screen;

shell > nysql < batch-file | nore

¢ You can catch the output in afile for further processing:

shel I > nysql < batch-file > nysql. out

¢ You can distribute your script to other people so that they can also run the commands.

* Some situations do not allow for interactive use, for example, when you run aquery fromacr on job. In this case, you must use
batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you use it interactively. For ex-
ample, the output of SELECT DI STI NCT speci es FROM pet lookslikethiswhen nmysql isruninteractively:

In batch mode, the output looks like this instead:

speci es
bird
cat

21

http://dev.mysql.com/doc/refman/5.1/en/mysql.html#option_mysql_force

Using nysql in Batch Mode

dog
hanst er
snake

If you want to get the interactive output format in batch mode, use mysql -t . To echo to the output the commands that are executed,
usenysql -vvv.
Y ou can also use scripts from the mysql prompt by using the sour ce command or \ . command:

nysql > source filenane;
nysql > \. filenane

See Executing SQL Statements from a Text File, for more information.

22

http://dev.mysql.com/doc/refman/5.1/en/batch-commands.html

Chapter 6. Examples of Common Queries

Here are examples of how to solve some common problems with MySQL .

Some of the examples use the table shop to hold the price of each article (item number) for certain traders (dealers). Supposing that
each trader has asingle fixed price per article, then (ar t i cl e, deal er) isaprimary key for the records.

Start the command-line tool nysql and select a database:

shel | > nmysqgl your-dat abase- nanme

(In most MySQL installations, you can use the database named t est).

Y ou can create and popul ate the exampl e table with these statements:

CREATE TABLE shop (
article | NT(4) UNSI GNED ZEROFI LL DEFAULT ' 0000' NOT NULL,
deal er CHAR(20) DEFAULT ' NOT NULL,
price DOUBLE(16, 2) DEFAULT ' 0.00' NOT NULL,
PRI MARY KEY(arti cl e, dealer));

I NSERT | NTO shop VALUES
(1,"A,3.45),(1,'B ,3.99),(2,'A,10.99),(3,'B , 1.45),
(3,'C,1.69),(3,'D,1.25),(4,'D,19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROVI shop;

R e I S +
| article | deal er | price |
L Fomm - - Fomm - +
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
R E H--- - - +

6.1. The Maximum Value for a Column

“What is the highest item number?’

SELECT I\/Ax(artlcle) AS article FROM shop;

6.2. The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.
Thisis easily done with a subquery:

SELECT article, dealer, price
FROM shop
W-IERE pri ce (SELECT MAX(pr| ce) FROM shop);

Other solutionsareto usea LEFT JO Nor to sort al rows descending by price and get only the first row using the MySQL -specific
LI M T clause:

SELECT sl.article, sl.dealer, sl.price
FROM shop s1

23

Examples of Common Queries

LEFT JO N shop s2 ON sl.price < s2.price
WHERE s2.article I'S NULL;

SELECT article, dealer, price

FROM shop

ORDER BY price DESC

LIMT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LI M T solution would show only one of
them.

6.3. Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop

GROUP BY article;

Fommmm e m o Fommm o +

| article | price |

Feoccooooo Focmmoes +

| 0001 | 3.99 |
| 0002 | 10.99 |
| 0003 1.69 |
| 0004 | 19.95 |

6.4. The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop sl
WHERE price=(SELECT MAX(s2.price)
FROM shop s2
WHERE sl.article = s2.article);

C S S £ T N S SIS S +
| article | dealer | price |
R R Fomm - +
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
B S B S SO S +

The preceding example uses a correlated subguery, which can be inefficient (see Correlated Subqueries). Other possibilities for solving
the problem are to use an uncorrelated subquery in the FROMclauseor aLEFT JO N:

SELECT sl.article, dealer, sl.price
FROM shop s1
JAN (
SELECT article, MAX(price) AS price
FROM shop
GROUP BY article) AS s2
ON sl.article = s2.article AND sl.price = s2.price;
SELECT sl.article, sl.dealer, sl.price
FROM shop sl
LEFT JO N shop s2 ON sl.article = s2.article AND sl.price < s2.price
WHERE s2.article I'S NULL;

The LEFT JO Nworksonthebasisthat whens1. pri ce isat its maximum value, thereisnos2. pri ce with agreater value and
the s2 rows valueswill be NULL. See JO N Syntax.

6.5. Using User-Defined Variables

Y ou can employ MySQL user variables to remember results without having to store them in temporary variablesin the client. (See
User-Defined Variables.)

24

http://dev.mysql.com/doc/refman/5.1/en/correlated-subqueries.html
http://dev.mysql.com/doc/refman/5.1/en/join.html
http://dev.mysql.com/doc/refman/5.1/en/user-variables.html

Examples of Common Queries

For example, to find the articles with the highest and lowest price you can do this:

nysql > SELECT @ri n_price: =M N(price), @uax_price: =MAX(pri ce) FROM shop;
rrysql > SELECT * FRO\/I shop V\HERE price=@ri n_price OR price=@max_price;

| article | deal er | price |

R i S R

| 0003 | D | 1.25 |

| 0004 | D | 19.95 |

E E R H--- - - - +
Note

It is also possible to store the name of a database object such as atable or acolumn in auser variable and then to use this
variablein an SQL statement; however, this requires the use of a prepared statement. See SQL Syntax for Prepared State-
ments, for more information.

6.6. Using Foreign Keys

In MySQL, | nnoDB tables support checking of foreign key constraints. See The | nnoDB Storage Engine, and Foreign Keys.

A foreign key constraint is not required merely to join two tables. For storage engines other than | nnoDB, it is possible when defining a
column to use aREFERENCES t bl _nane(col _nane) clause, which has no actual effect, and serves only as a memo or comment
to you that the column which you are currently defining isintended to refer to a column in another table. It is extremely important to
realize when using this syntax that:

« MySQL does not perform any sort of CHECK to make surethat col _nane actually existsint bl _nane (or eventhatt bl _nane
itself exists).

e MySQL does not perform any sort of actionont bl _nane such as deleting rows in response to actions taken on rowsin the table
which you are defining; in other words, this syntax inducesno ON DELETE or ON UPDATE behavior whatsoever. (Although you
canwritean ON DELETE or ON UPDATE clause as part of the REFERENCES clause, it is also ignored.)

« Thissyntax creates a column; it does not create any sort of index or key.

Y ou can use a column so created as ajoin column, as shown here:

CREATE TABLE person (
id SMALLI NT UNSI GNED NOT NULL AUTO | NCREMENT,
name CHAR(60) NOT NULL,
PRI MARY KEY (i d)

)
CREATE TABLE shirt (
id SMALLI NT UNSI GNED NOT NULL AUTO_I NCREMENT,
style ENUM 't - shi rt polo , dress) NOr NULL
col or ENUM ' red' " bi ue' or ange ‘white', "bi ack') NOT NULL,
owner SMALLINT UNSI GNED NOT NULL REFERENCES' person(id),
PRI MARY KEY (i d)

)

I NSERT | NTO person VALUES (NULL, 'Antonio Paz');
SELECT @ast := LAST_INSERT_ID();

I NSERT | NTO shirt VALUES

(NULL, 'polo', 'blue', @ast),

(NULL, 'dress', 'white', @ast),

(NULL, "t-shirt', "blue', @ast);

I NSERT | NTO person VALUES (NULL, 'Lilliana Angel ovska');
SELECT @ast := LAST_INSERT_IDX();

I NSERT | NTO shirt VALUES

(NULL, 'dress', 'orange', @ast),

(NULL, 'polo', 'red', @ast),

(NULL, 'dress', 'blue', @ast),

(NULL, "t-shirt', "white', @ast);

SELECT * FROM person;

fmcccdocococcocoscooscoosoo +
| id | nane |

B +

| 1] Antonio Paz |

| 2] Lilliana Angel ovska |
Jocccimocococcocoscocoscoosoo +
SELECT * FROM shirt
fmcccdmoscoosco fmcccoaos focozooo +
| id | style | color | owner |
8 E e S B S IS S +
| 1] polo | blue | 1]
| 2] dress | white | 1|

25

http://dev.mysql.com/doc/refman/5.1/en/sql-syntax-prepared-statements.html
http://dev.mysql.com/doc/refman/5.1/en/sql-syntax-prepared-statements.html
http://dev.mysql.com/doc/refman/5.1/en/innodb.html
http://dev.mysql.com/doc/refman/5.1/en/ansi-diff-foreign-keys.html

Examples of Common Queries

| 3] t-shirt | blue | 1

| 4] dress | orange | 2 |

| 5] polo | red | 2 |

| 6] dress | blue | 2 |

| 7] t-shirt | white | 2 |
+ +

SELECT s.* FROM person p | NNER JO N shirt s
ON s.owner = p.id
VWHERE p. nane LI KE Lilli ana%

AND s. col or ‘white'
B L R H--- - - - +
| id | style | color | owner |
B B P +
4] dress	orange	2
5] polo	red	2
6] dress	blue	2
R e R - - +

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE or DESCRI BE:

SHOW CREATE TABLE shirt\G

KAk KKK KKKk Kk kK kX kh Kk hkk kx| [OW X H %%k kkokkk ok ok ok ok ok k ok ok ok ok ok ok kK k ok k

Tabl e: shirt

Create Tabl e: CREATE TABLE “shirt™ (

“id smallint(5) unsigned NOT NULL auto_increnent,

“style’ enun('t-shirt’,'polo','dress') NOT NULL,

“color’ enun('red','blue','orange','white','black') NOT NULL,
“owner” smallint(5) unsigned NOT NULL,

PRI MARY KEY ("id")

) ENG NE=M/| SAM DEFAULT CHARSET=I ati nl

The use of REFERENCES in this way as acomment or “reminder” in a column definition works with My SAMtables.

6.7. Searching on Two Keys

An ORusing asingle key iswell optimized, asis the handling of AND.

The one tricky caseisthat of searching on two different keys combined with OR:

SELECT fi el d1_i ndex, f| el d2_i ndex FROM test_tabl e
WHERE fieldl index = '1' OR field2_index = '1'

This case is optimized. See Index Merge Optimization.

Y ou can also solve the problem efficiently by using a UNI ON that combines the output of two separate SELECT statements. See UNI ON
Syntax.

Each SELECT searches only one key and can be optimized:

SELECT fieldl_index, field2_index

FROM t est _tabl e WHERE fiel d1_i ndex = '1'
UNI ON
SELECT fieldl_index, field2_index

FROM test _tabl e WHERE field2_index = "'1";

6.8. Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days per month a user has visited a
Web page.

CREATE TABLE t1 (year YEAR(4), month |NT(2) UNSI GNED ZEROFILL,
day INT(2) UNSIGNED ZERCFI LL);

I NSERT | NTO t1 VALUES(2000, 1, 1) (2000, 1, 20) , (2000, 1, 30), (2000, 2, 2) ,
(2000, 2, 23), (2000, 2, 23) ;

The exampl e table contains year-month-day values representing visits by users to the page. To determine how many different daysin
each month these visits occur, use this query:

SELECT year, nont h, Bl T_COUNT(BI T_OR(1<<day)) AS days FROM t1
GROUP BY year, nont h;

26

http://dev.mysql.com/doc/refman/5.1/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_and
http://dev.mysql.com/doc/refman/5.1/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.1/en/index-merge-optimization.html
http://dev.mysql.com/doc/refman/5.1/en/union.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/union.html
http://dev.mysql.com/doc/refman/5.1/en/union.html
http://dev.mysql.com/doc/refman/5.1/en/select.html

Examples of Common Queries

Which returns:

ocosco focozooo ocosco +
| year | nmonth | days |
Focoooo Focooooo Foocoooo +
| 2000 | 01 | 3|
| 2000 | 02 | 2 |
PFocozco Pfocozoeoo PFocozco +

The query calculates how many different days appear in the table for each year/month combination, with automatic removal of duplicate
entries.

6.9. Using AUTO | NCREMENT

The AUTO _| NCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE ani mal s (
id MEDI UM NT NOT NULL AUTO_| NCREMENT,
name CHAR(30) NOT NULL,
PRI MARY KEY (i d)

);

I NSERT | NTO ani nal s (nane) VALUES
('dog'),('cat'), (" penguin'),
("lax"),('whale'), ("ostrich');

SELECT * FROM ani mal s;

Which returns:

Y ou can retrieve the most recent AUTO | NCREMENT value with the LAST_| NSERT_| D() SQL function or the
nysql _i nsert_i d() CAPI function. These functions are connection-specific, so their return values are not affected by another
connection which is a'so performing inserts.

Note

For amultiple-row insert, LAST | NSERT _| D() andnysql _i nsert i d() actualy returnthe AUTO | NCREVENT
key from the first of the inserted rows. This enables multiple-row inserts to be reproduced correctly on other serversin a
replication setup.

For My I SAMtables you can specify AUTO | NCREMENT on a secondary column in a multiple-column index. In this case, the generated
value for the AUTO_| NCREMENT column is calculated as MAX(aut o_i ncrenment _col utm) + 1 WHERE prefi x=gi ven-
pr ef i x. Thisisuseful when you want to put datainto ordered groups.

CREATE TABLE ani mal s (
grp ENUM ' fish', ' mammal ', " bird) NOT NULL,
i'd MEDI UM NT NOT NULL AUTO_| NCREMENT,
name CHAR(30) NOT NULL,
PRI VARY KEY (grp,id)
) ENG NE=MyI SAM
I NSERT | NTO ani nal s (grp, nane) VALUES
(" mammal ', ' dog'), (' mammal ', ' cat'),
("bird ,'penguin'),('fish',"lax"), (' manmmal'," ' whale'),
("bird ,"ostrich');
SELECT * FROM ani mal s ORDER BY grp,id;

Which returns:

fooccoaos focoodmozcoozco +
| agrp | id | name |
-------- occcdmococosoods
fish	1] lax	
manmmal	1	dog
manmal	2	cat
manmmal	3	whale

27

http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.1/en/mysql-insert-id.html
http://dev.mysql.com/doc/refman/5.1/en/information-functions.html#function_last-insert-id
http://dev.mysql.com/doc/refman/5.1/en/mysql-insert-id.html
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_max
http://dev.mysql.com/doc/refman/5.1/en/group-by-functions.html#function_max

Examples of Common Queries

1| penguin |
| 2] ostrich |

In this case (when the AUTO_| NCREMENT column is part of a multiple-column index), AUTO_| NCREMENT values are reused if you
delete the row with the biggest AUTO_| NCREMENT value in any group. This happens even for Myl SAMtables, for which
AUTO_| NCREMENT values normally are not reused.

If the AUTO_| NCREMENT column is part of multiple indexes, MySQL will generate sequence values using the index that begins with
the AUTO | NCREMENT column, if there is one. For example, if the ani nal s table contained indexes PRI MARY KEY (grp, id)
and | NDEX (i d), MySQL would ignore the PRI MARY KEY for generating sequence values. As aresult, the table would contain a
single sequence, not a sequence per gr p value.

To start with an AUTO | NCREMENT value other than 1, you can set that value with CREATE TABLE or ALTER TABLE, like this:

nysql > ALTER TABLE tbl AUTO | NCREMENT = 100;

More information about AUTO | NCREMENT is available here:

¢ How to assign the AUTO | NCREMENT attribute to a column: CREATE TABLE Syntax, and ALTER TABLE Syntax.
¢ How AUTO_| NCREMENT behaves depending on the SQL mode: Server SQL Modes.

e How to find the row that contains the most recent AUTO_| NCREMENT value: Comparison Functions and Operators.
e Setting the AUTO_| NCREMENT value to be used: Server System Variables.

e AUTO | NCREMENT and replication: Replication Features and | ssues.

e Server-system variablesrelated to AUTO | NCREMENT (aut o_i ncrenent _i ncrenment andaut o_i ncrenent _of f set)
that can be used for replication: Server System Variables.

28

http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.1/en/comparison-operators.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.1/en/replication-features.html
http://dev.mysql.com/doc/refman/5.1/en/replication-options-master.html#sysvar_auto_increment_increment
http://dev.mysql.com/doc/refman/5.1/en/replication-options-master.html#sysvar_auto_increment_offset
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html

Chapter 7. Queries from the Twin Project

At the places the early MySQL was devel oped (Analytikernaand Lentus), the founders did systems and field work for abig research
project. This project was a collaboration between the Institute of Environmental Medicine at Karolinska I nstitutet Stockholm and the
Section on Clinical Research in Aging and Psychology at the University of Southern California.

The project involved lots of data collection from all twinsin Sweden older than 65 Y ears (see ht-
tp://ki.selkiljsp/polopoly.jsp?d=9610& |=en).

Large parts of the project were administered with a Web interface written using Perl and MySQL.

7.1. Find All Nondistributed Twins

The following query was used to determine what twins should be studied further after ainitial screening. Thiswas written around 1997
using MySQL 3.19.

SELECT
CONCAT(pl.id, pl.tvab) + 0 AS tvid,
CONCAT(pl. christian_name, ' ', pl.surnanme) AS Nane,

pl. postal _code AS Code,
pl.city AS City,
pg. abrev AS Area,
IF(td.participation = 'Aborted', "A, ' ') AS A
pl. dead AS deadl,
event AS event 1
.suspect AS tsuspectl,
.suspect AS isuspect1,
.severe AS tseverel,
.severe AS iseverel,
. dead AS dead2?,
.event AS event2,
h2. nurse AS nurse2,
h2. doct or AS doctor 2,
td2. suspect AS tsuspect 2,
i d2. suspect AS isuspect?2,
td2. severe AS tseverez2,
i d2. severe AS isevere2,
I.finish_date
FROM
twin_project AS tp
/* For Twin 1 */
LEFT JON twin_data AStd ONtp.id = td.id
AND tp.tvab = td.tvab
LEFT JON informant_data ASid ONtp.id =id.id
AND tp.tvab = id.tvab
LEFT JON harmony AS h ONtp.id = h.id
AND tp.tvab = h.tvab
LEFT JON |l entus AS| ONtp.id =1.id
AND tp.tvab = I.tvab
/* For Twin 2 */
LEFT JON twin_data AS td2 ON p2.id = td2.id
AND p2.tvab = td2.tvab
LEFT JO N i nf or mant dataASleCNled id2.id
AND p2.tvab = id2.tvab
LEFT JO N harnony AS h2 ON p2.id = h2.id
AND p2.tvab = h2.tvab
LEFT JON |lentus AS |12 ONp2.id =12.id
AND p2.tvab = | 2.tvab,
person_data AS pl,
person_data AS p2,
post al _groups AS pg
VWHERE
/* pl gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted fromtvab */
pl.id = tp.id AND pl.tvab = tp.tvab AND
p2.id = pl.id AND p2.ptvab = pl.tvab AND
/* Just the screenl ng survey */
tp.survey_no = 5
/*
(

I.
t
i
t
i
p
I

I\)NI\)Q.Q.QQ.

Skip 1 f partner d| ed before 65 but allow em gration (dead=9) */
p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR

(((TO_ ;J)A;()S(p2. deat h_date) - TO _DAYS(p2.birthday)) / 365)

>= 65

-

/* Twin is suspect
(td.future_contact
[* Twin is suspect
(td.future_contact

'Yes' AND td.suspect = 2) OR

Informant is Blessed */

'Yes' AND td.suspect =1
AND id.suspect = 1) OR

o *

29

http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en
http://ki.se/ki/jsp/polopoly.jsp?d=9610&l=en

Queries from the Twin Project

/ twin - Informant is Blessed */
(I'SNULL(td. suspect) AND id.suspect = 1

AND id.future_contact = 'Yes') OR
/* Twin broken off - Informant is Blessed */

(td.participation = 'Aborted'

AND id.suspect = 1 AND id.future_contact = 'Yes') OR
/* Twin broken off - No inform- Have partner */
(td.participation = 'Aborted" AND I SNULL(id. suspect)
AND p2.dead = 0))

| .event = 'Finished
/* Get at area code */
AND SUBSTRI NG pl. postal _code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse I'S NULL OR h. nurse=00 OR h. doct or =00)
/* Has not refused or been aborted */
AND NOT (h.status = 'Refused' OR h.status = 'Aborted
OR h.status = 'Died" OR h.status = 'Qher")
ORDER BY
tvid;

Some explanations:

e CONCAT(pl.id, pl.tvab) + O AS tvid

We want to sort on the concatenated i d and t vab in numerical order. Adding O to the result causes MySQL to treat the result asa
number.

e Columnid

Thisidentifiesapair of twins. Itisanindex in all tables.
e Columntvab

Thisidentifiesatwinin apair. It hasavalue of 1 or 2.
e Columnpt vab

Thisisaninverseof t vab. Whent vab is1 thisis 2, and vice versa. It exists to save typing and to make it easier for MySQL to
optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same table with ajoin (p1 and p2). In the ex-
ample, thisis used to check whether atwin's partner died before the age of 65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have anindex on bothi d, tvab (all tables),andi d, ptvab
(per son_dat a) to make queries faster.

When we did this work, our production machine was a 200MHz UltraSPARC, and on that old hardware this query returned about 150 to
200 rows in less than one second. The main table had 70,000 Rows.

7.2. Show a Table of Twin Pair Status

Each twin has a status code called event . The query shown hereis used to select all twin pairs combined by event. Thisindicatesin
how many pairs both twins are finished, in how many pairs one twin is finished and the other refused, and so on.

SELECT
t1. event,
t2. event,
COUNT(*)
FROM
lentus AS t1,
lentus AS t 2,
twin_project AS tp
VWHERE
/* W are looking at one pair at a tine */
tl.id = tp.id
AND t 1.tvab=tp.tvab
AND t1.id =t2.id
/* Just the screening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab="1" AND t2.tvab='2'
GROUP BY

30

http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_concat

Queries from the Twin Project

tl.event, t2.event;

31

Chapter 8. Using MySQL with Apache

There are programs that let you authenticate your users from aMySQL database and also let you write your log filesinto aMySQL ta-
ble.

Y ou can change the Apache logging format to be easily readable by MySQL by putting the following into the Apache configuration
file:

LogFor mat \
"\ "o\ ", o %% e % ARGt , s, \ " 9%\ ", \ " % Cont ent - Type}o\", \
\"9%N" \"9% Referer}i\", \"% User-Agent}i\""
Toload alog filein that format into MySQL, you can use a statement something like this:
LOAD DATA I NFI LE '/l ocal /access_| 0og" | NTO TABLE t bl _nane
FI ELDS TERM NATED BY ',' OPTI ONALLY ENCLOSED BY ' "' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFor mat line writes to the log file.

32

	MySQL Tutorial
	Tutorial
	Chapter 1. Connecting to and Disconnecting from the Server
	Chapter 2. Entering Queries
	Chapter 3. Creating and Using a Database
	3.1. Creating and Selecting a Database
	3.2. Creating a Table
	3.3. Loading Data into a Table
	3.4. Retrieving Information from a Table
	3.4.1. Selecting All Data
	3.4.2. Selecting Particular Rows
	3.4.3. Selecting Particular Columns
	3.4.4. Sorting Rows
	3.4.5. Date Calculations
	3.4.6. Working with NULL Values
	3.4.7. Pattern Matching
	3.4.8. Counting Rows
	3.4.9. Using More Than one Table

	Chapter 4. Getting Information About Databases and Tables
	Chapter 5. Using mysql in Batch Mode
	Chapter 6. Examples of Common Queries
	6.1. The Maximum Value for a Column
	6.2. The Row Holding the Maximum of a Certain Column
	6.3. Maximum of Column per Group
	6.4. The Rows Holding the Group-wise Maximum of a Certain Column
	6.5. Using User-Defined Variables
	6.6. Using Foreign Keys
	6.7. Searching on Two Keys
	6.8. Calculating Visits Per Day
	6.9. Using AUTO_INCREMENT

	Chapter 7. Queries from the Twin Project
	7.1. Find All Nondistributed Twins
	7.2. Show a Table of Twin Pair Status

	Chapter 8. Using MySQL with Apache

